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Making use of the results in [l-31, the problem of the boundary layer 
on a flat plate is solved for incompressible flow of an anisotropically- 
conducting fluid in the presence of a uniform magnetic field. The solu- 
tion is carried out for two different cases - a weakly ionized and fully 
ionized medium - for various conditions in the external flow. It is 
assumed that the cyclotron frequency of the ions is small compared with 
their collision frequency. The solution is obtained by the method of 
linearization with respect to a certain parameter. The numerical solu- 
tions were obtained on the “Strela” machine in the MGU computation 
center.- Velocity and temperature profiles in the boundary layer are pre- 
sented for various values of the parameters which define the problem. 

Notation 

v - vector (u, v, w) velocity of the medium 

p - pressure 

pe - pressure of the electron component 

p - density 

T - temperature 

?l - coefficient of viscosity 

757 
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h- coefficient of heat conductivity in the absence of a magnetic 
field 

=P 
- SDecific heat at constant pressure 

C lJ - specific heat at constant volume 

o - electric conductivity of the mediun in the absence of a magnetic 
field 

E - vector (E,, By, E,) of electric field intensity 

HO - intensity of the uniform magnetic field 

I - vector (jz, j,, j,) of electric current density 

PC - electric charge density 

9 - cyclotron frequency of electrons 

T. - 
1 

"mean free tine* of electrons 

PO 
- characteristic density of the problem 

L - characteristic length of the problem 

u - characteristic velocity 

P - Prandtl number 

R - Reynolds number 

M - Mach number 

Q - characteristic frequency of the problem 

6 - dynamic boundary layer thickness 

E” - thermal boundary layer thickness 

e - value of the electron charge 

k - Boltzoann' s constant 

c - velocity of light 

“i - masses of electron and ion, respectively, for i = 1. 2 

"1 - 
electron concentration 

TV - temperature of the plate 

Tal - free stream temperature 

=z - unit vector along the r-axis 

1. ‘IIre dynamical boundary layer problem. In what follows, 
the problem always considered is that of the boundary layer on a di- 
electric plate occupying the half-plane z = 0, x > 0. ‘Ike magnetic 

field is assumed to be uniform and normal to the plate (H = HocZ) in the 
region x > 0 and zero in the region x < 0. For x < 0 the flow is assumed 

to be uniform and along the x-axis. It is assumed that E,, = 0 and that 
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none of the quantities depend on y. 'Ihe quantities which characterize 

the spiral paths of electrons and ions are assumed to satisfy the con- 
ditions al71 7% OT 'CI 1, G2T2 << I. Under these conditions the viscosity 
does not depend on the magnetic field. In the following, the viscosity 
(q), the electrical conductivity in the absence of magnetic field (CT), 
and WT are taken to be constant. 

The formulation of the dynamical boundary layer problem for these 

conditions is given in C3I, where the problem is solved for one of the 
possible formulations of conditions in the external flow, for the case 
of a weakly ionized medium. In the present paper, this problem is 
solved for other cases, 

The problem of the dynamical boundary layer in the fo~ulation under 
consideration reduces to the system of equations E31 

ar4 -+$=o az 

'Ihe functions p = p*(x) and EXo = RX*(x) 

solution of the external problem. In fl.l), 
following dimensionless quantities are used: 

are determined from the 
as in all that follows, the 

In obtaining equations (1.11, use was made of Ohm's law in the form 
(with dimensionless quantities) 

.j =o(E + $yx II)-_(jxH-cgradp,) (1.3) 

when considering a fully ionized medium, it is necessary to put 

+e 
=p in equations (1.1) and (1.3). For a weakly ionized medium, the 

terms containing the electron pressure in (1.1) and (1.3) should be 
dropped. 

We shall look for a solution of the system (1.1) of the form 

u = u,+mLu,, v = mLvl, w =wo -j- mLw,, p = p. + mLp, etc, (1.4) 

Here, the subscript zero denotes quantities corresponding to the 
Blasius problem. We introduce the functions fe(c), f2(<),@(t) by the 
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formulas 

ug = fo’ (E ) 7 Ul = d:fa’, wo = - f &g (fo - Efo’) 11.5) 

w,=-+ 
V- %(3f, - GE), u=otz@((E), E==zJ4 

Taking into account that ap,,/& = 0, we obtain from (1.1) the follow- 

ing system of equations for determining fs(t) and (o(c): 

2f;'+fj$n - 2f,'fz' + 3f,"fs - 2f,'- 2(% - or&;)+ 

2~ +f,@ - af,'a,- 2fo' - 2 f Em* + 1 +;ala z) = 0 
( (1-6) 

Here, fu(e) is the Blasius function. 

To solve equations (1.6), it is necessary to determine apI*/& and 

ExO*(x) and the boundary conditions for the functions f2 and @ at c =m. 

For this, it is necessary to solve the following equations, which deter- 

mine the perturbations to the J3lasius solution (u' = 1, V* = W* = 0, 

apl;/ax = 0) in the external flow 

aul* w 1 + wtEro* + 1 (fzs,, apel* awl* apl* --- 
3F= ax -’ ---=--37 ax ax 
avl* oz a&l* ?g+ag=o (1.7) 
-zz-.-.. 

ax mr - Erg* - 1 + o&2 -yg-- 3 

and also the following equations, which determine the electric field 

(E,*) in the external flow: 

rot E,* -= 0 (1.8) 

Since the plate is taken to be a dielectric, therefore 

E,o* (2 = 0) = 0 

With equations (1.7) and (1.8), various formulations of the problem 

are possible. 

To solve equations (1.6). what is necessary, in addition to the cou- 

ditions on the plate-E,,,* (z = 0) = 0, is to formulate the condition at 
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infinity, which depends on the manner of closure, at infinity, of the 
currents flowing in the xz-plane. For this condition, use will be made 
of one of the two following conditions. Either it will be assumed that 
the potential of the electric field is constant at infinity, which 
corresponds to full neutralization of the charge carried by the currents 
in the xz-plane at infinity. In this case the solution of (1,8) has the 
form E,+ = 0 and the currents in the external flow circulate in the 
direction of the x-axis, Or it will be assumed that the current density 
in the x%-plane vanishes at infinity, j,& = 0. 

In the latter case, it can be shown that it follows from (1.8) that 

j * ” 0 but E* # 0. This results from the fact that the charge which is 
t%sported to infinity by the currents in the x%-plane creates an 
electric field which cancels the field induced by the fluid motion, The 
magnitude of the electric field can be computed from Ohm’s law. We note 
that for the case being considered (Ey* = 0) the current in the y- 
direction is always different from zero. If the electric field is given, 
the external flow has to be determined by solving the system Cl.?), 

In the following, we shall make use of solutions of (1.7) which car- 

respond either to a uniform flow (u* = U +- mLul* = U, ul* = 0) or to a 

flow with zero pressure gradient in the x-direction (a,,*/& = 0). The 
first case corresponds to conditions in which the electromagnetic force 
in the external flow (it is constant to first approximation) is equal 
to the constant pressure gradient. The second case corresponds to con- 
ditions in which the external flow is braked by the electromagnetic 
forces. In that case, the velocity in the external flow will be a funo- 
tion of x(u*(s) = II + mtu,*(x)), determined by the system (1.7). We 
note that for the case $,*/a~ = 0 it will follow from the equation of 
continuity that w + a~ at z -+ m in the external flow. This indicates that 
solutions of this type do not exist for the whole flow; they may be eon- 
sidered only as solutions which are valid near the plate and join with 
a solution away from the plate where a~,*/& # 0 fan analogous situation 
occurred in f41 f. In what follows, such a matching will not be considered. 

2. Solution of the dynamical boundary layer prablem. In 
solving the boundary layer problem in what folfows, four different 
formulations of the problem in the external flow will be considered, 
corresponding to the following solutions of equations (1.7) and (1.8): 

For a weakly ionized medium 
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Em,* = 0, q* = 0, E,,* = 0, vl* = - ozx, wl* = 0, aPl* 
aL= -3 

jrl* = 
PUS 

@ZN,n 9 jzI1+= _g.g ) jzl* = 0 (2-2) 

Fig. 1. (2.5) 

For a fully ionized medium 

j21* = 0, ux* = 0, E&,* = - 0.5 0% 

J&* = 0, VI* = 0, WI" = 0 

%l* 
-&IT= - (1 + oPz2) 

&/I* = - (1 + 02Z2) g , 
0 

jzl* = 0 (2.3) 

Em*= 0, ul* = 0, &*=: 0 

(2.4) 

jZl+ =o 

Formulations which are identical for weakly and fully ionized media 
are 

jm* = 0, aPI+ 
x = 0, E** = - oz, E,,* =I 0, aI* = - (1 + &*) 3 

VI* = 0, WI* = (1 + 02T2) 2, j-vi*= -g (1 + oPr2), jZl* = 0 (2.5) 

EM* = 0, 'g = 0, E,,* = 0, q* = - 5, vl* = - 022, wl* = 2 
. * 

JXI 
PUS 

=qfp &* = - !g t j*1*= 0 w4 

Putting the solutions (2.1) to (2.6) 
the ordinary differential equations and 
mining the functions fz($> and dr(EJ for 
The results, put into the equations 

in (1.5) and (1.6), we obtain 
boundary conditions for deter- 
each of the indicated cases. 
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are shown* in Figs. 1 to 5, which have been obtained for m*x = 0.5 and 
various values of OT (naturally, knowing the functions f2 and 0, it is 
possible to obtain the velocity distributions for arbitrary 111*x). 

1.0 

al9 

0.6 

0.u 

a2 I 

I 
m*x=O.S 

a 
I I I 

4.0 6.0 

0.6 

a4 

Fig. 2. (2.6) Fig. 3. (2.5) 

On all figures, the curve for m*x = 0, corresponding to the l3lasius 
solution, is shown for comparison. 

‘Ihe case (2.2) was considered in [31, but the distribution of the 
longitudinal velocity u, obtained in [3I, will be the same for (2.1) to 
(2.4)) and the distribution of the transverse velocity v will be the 
same for (2.2) and (2.6).** 

Figures 1 and 2 show that for large m*x (strong magnetohydrodynamic 

interaction) and for certain values of o-r a separation of the boundary 

layer occurs in the cross-section x* < 0.5 m*. For smaller m*x and the 
same o-r, separation may not occur. Ihis may be seen, for example, from 
Fig. 3. In cases (2.1) to (2.4), boundary layer separation does not 
occur [31, since the flow is with decreasing pressure. 

The coefficients of longitudinal and transverse skin friction, C, 

and Cy , respectively, may be computed for the various cases from the 

l The authors made calculations of velocity and temperature profiles 

(cf. below) for OT equal to 0. 0.5, 1, 1.5, 2 and I*X equal to 0.1 
and 0.5: here. the results of the computations are not given in full. 

(The numbers under the figures indicate which of the equations (2.1) 

to (2.6) corresponds to the given curves.) 

** Due to the choice of coordinate systems, the velocity v in the pre- 
sent paper and w in [31 are equal in magnitude and opposite in sign. 
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equations 

Here fO” = 0.332, and the values of fi!“(0) and a’(O) are given in 
Table 1: 

TABLS 1. 

Values of fzl” (0) Values of W(0) 

01 1 (2.1) - (2.6) 

i.5 
I .I39 
1.139 

I 1.139 
I.5 1.139 
2 1.139 

(2.5) 

q x7! 

-2: 955 
-5.513 
-9.096 

(2.6) 

-0.908 
-0.908 
-0.908 
-0.9438 
-0.908 

01 I (2.1). (2.3). (2.5) 1 (2.4) 1 (2.2). (2.6) 

0.5 0.871 0.083 -0.547 

:.5 0.871 0.871 -0.074 -0.213 -0.547 -0.547 
2 0.871 -0.311 -0.547 

3. Faergy equation for the boundary layer in an electri- 
cally conducting gas with anisotropic transport properties. 
Neglecting the spiral paths of the ions (ONTO << l), the energy equa- 

tion for a fully ionized gas may be written in the form [ll 

dT 
PC, dt =ds+j(E+ c ’ vrH) +q [27(z)‘-(divv)? ]+ 

+q[(~+$)p+(~+~)a+($+~)3]++-i(divvJ2+ 

+ div (lixvT) + -&- h (1 - x) g- I div hl'j + $ h (1 - L') iz - 

(3.1) 

l The values of f**‘(O) given here are different from the corresponding 

values given in [4] and taken over by [31 from [41. Also, we take 

the opportunity to note that the value of o’(O) for case (2.2) given 

in [31 is incorrect. 
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Here 

x = (1,47w2r2 + 3.77)A, x’ = (0.79102r2 + 6.86) A 

L = 2.03, -$- , G’ = (1.580~24 + 26.60~~~ + 7.66)Tg 

Ln= (0.9490222 + 1.93)s , + = 0424 + 14.79ost2 + 3.77 

Equation (3.1) is written for the case of the magnetic field directed 

along the z-axis. 

0.12 

a08 

a04 

Fig. 4.(2.1), (2.3), (2.5) 

We note that in a fully ionized 

gas the viscosity is determined by 

the ions and the heat conductivity 

(for the case +T~ << 1) by the 

Fig. 5. ((2.4) 

electrons. In equation (3. l), besides the usual terms, connected with 

the addition of heat due to heat conduction, viscous and joule dissipa- 

tion, and the work of pressure forces, there are terms connected with 

the addition of heat due to electron diffusion (Thomson effect) 

[ div hl’j + -&h (1 --I’) jL ] 

and due to the spiral electron paths (Ettingshause, Leduc-Kghi effects 

[ll ) 

In order to obtain the boundary layer equations from equations (3.1), 

it is necessary to make the usual boundary layer estimates [z,sI and 

keep in the equations only the main terms. Doing this, we obtain from 

(3. l), in the formulation of Article 1 (H = Hoe,, E = 0, a/a, = 0, 
H, = const), the following ener,T equation for the & undary layer on a 
flat plate: 
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(3.2) 

Here, j,O, jYo, jzo, E o and E ’ are the components of current 

density and electric field strength [21, of order unity (with respect 

to 6), and j,’ is the current density in the z-direction, of order 6. 

For the boundary layer on a dielectric plate 131 we have jzo = 0. In 

what follows, we shall use, in addition to (1.2), the following dimen- 

sionless quantities: 

p+, B=s 
P 

(3.3) 

Here, p. is a characteristic density, e is the charge on the electron, 
and the other symbols are well known. 

Using Ohm’s law in the form (1.3) and the dimensionless quantities 

(1.2) and (3.3), we obtain equations (3.2) in the form 

-$q (div v)” + mL.[(Exo + u)(E," + u + OTU + 0'50r La,)- i-f&V mL & 

(3.4) 

Here 

cL=, S8 1.5804++26.60%‘+7.66 e 1.58 0.95 0P.P + 1.93 
Cl++ + 14.79 &?a + 3.77 

’ = 
ocr’ + 14.79 e?+ + 3.77 

In obtaining this equation and in what follows, it is assumed for 

simplicity that the specific heat, the transport coefficients, and (JI 

are constants. 

It is easy to see that, in the case being considered (j,O * jyo*l. 

j, - 6). the terms connected with the Thomson and Wtlngshausen effects 

are of the same order, while their relation to terms on the left side 

of equation (3.4) are determined by the parameter B. If the terms making 
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up B are represented by formulas from kinetic theory, we obtain 

akHo nle2Tl kH0 ma 
B=-=_-_-_ 

P 6.x -_ 
CPoeCr ml WPO 5k PO 5 

Here, cp is expressed by means of the usual formulas for a mixture 

composed of electrons and singly-ionized ions, neglecting the specific 

heat connected with the potential energy of interaction of the particles 

cp==3c +c 
m2 Pl P2 

Thus, the parameter R for a fully ionized gas is related to o-r and 

is not an independent parameter of the problem. For OT - 1 the Parameter 

B * 1, and, therefore, terms connected with the Thomson and Ettings- 

hausen effects are comparable with the convective terms in equations 

(3.4). In what follows, the energy equation for a fully ionized gas will 

be used in the form (3.4). 

The quantity jZ’ is determined by the relation 

PfJ= 'l = (1 +- 01~7~) mL r(Ezl+ 0.5 6x 12 -- aP 1 
1 + 02r2 mL a.2 ) 

(3.6) 

To determine E 1 we make use of the continuity equation for current 

density, the genefalized Ohm’s law in the form (1.3)) as well as bound- 

ary layer estimates in Maxwell’s equations [2,31, and obtain 

+1+ o.50z La,)= 
1 + w2T2 mL a.2 

1 

( 

aw av 

= 1+ 6iW 
0.5 oz I asp a-f-%' 

oz -Z-al:- ~+oZ.r2 zar2-7 1 (3.7) 

It should be noted that, for a fully ionized gas, the Prandtl number 

is a small quantity. In fact 

In addition, we note that, in a fully ionized gas, the following re- 

lation exists between the Reynolds number and other parameters defining 

the problem: 

(3.9) 

Here, M is the Mach number, R is a characteristic frequency of the 
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problem. The relation (3.9) shows that in a fully ionized gas 

m*L= as*/ P-i for 52 / 0~ - or - i 

(in this case, Ohm’ s law [61 is of the form (1.3)). 

In this case the boundary layer equations are valid only for large 
free stream velocities (M* >> l), since, besides satisfying the inequal- 
ity 

the condition of small thermal boundary layer thickness 6’ must also be 
satisfied [51 

If o-r is made smaller, with HO and other parameters constant, then 
it follows from (3.9) that the Reynolds number increases, which is 
connected with the decrease of viscosity, inasmuch as 

For increasing UT, the Reynolds number decreases. Thus, for a fully 

ionized gas, the Reynolds number will not be independent of the para- 
meters o-r and Q/o,. which determine the electromagnetic effects on the 
flow. This connection is determined by the relations (3.9). For inde- 
pendently given M, 07, Q/o2 (Al, UT, M*L), the Reynolds number becomes a 

determined quantity, and therefore, in such cases. it is always neces- 
sary to verify the applicability of the boundary layer model. 

If the gas is partially ionized, then, as follows from [?‘I, the co- 

efficients in the Thomson and Ettingshausen effects in equation (3.2) 

are, roughly speaking, proportional to the degree of ionization. ‘lhere- 

fore, in considering the boundary layer in a weakly ionized gas, the 

corresponding terms in the energy equation may be neglected, while the 

generalized Ohm’s law will have the form (1.3). but without the term con- 
taining the electron gas pressure gradient. In addition, in a weakly 

ionized gas, the heat conductivity and the viscosity are determined by 

the neutral particles, and therefore, the Prandtl number is of order 

unity. 

‘thus, in a weakly ionized gas, the energy equation for the boundary 

layer for the case considered (j, o = 0) can be written in the form 

(cf. (3.411 
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lhe parameters P, R, al and tn for a weakly ionized gas are inde- 
pendent, since P and R are determined by the neutral gas and do not de- 
pend on mL and UT, which are connected with the charged components. 
Equation (3.11) differs from the corresponding equation in isotropic 
megnetohydrodynamics [4] only in a change in the term connected with 
joule heat. 

4. Thermal boundary layer on a flat plate in a flow of 
weakly ionized incompressible gas with anisotropic electri- 
cal conductivity. The energy equation for a weakly ionized incom- 
pressible medium will be written in the form 

Here, all quantities are dimensionless; cy is the specific heat at 
Constant volume. 

Analogously to the case in Section 1, we shall look for solutions of 
equations (4.1) in the form 

T = T, -j- mLT, (4.2) 

Putting relations (1.4) and (4.2) in (4.1) we obtain for T,, the equa- 
tion 

(4.3) 

Here, and in all the computed examples of the case under considera- 

tion, we take P = 1. The solution of equation (4.3) corresponds to the 
solution for the distribution 
in an ordinary boundary layer 

of temperature in an incompressible fluid 

(%I = 0). With the boundary conditions 

T, = T, = T, = const for z = ~0 

form 

T, = T, for z =O, 

the solution of (4.3) has the 
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&t = Tw +e (5) = Tw - $ [I - lo' (8)~ -+ +-~I-~~~~)I (4.4) 

E=2)/iVG- 

lfere, fa(<) is the Blasius function. For ‘Arl we obtain the equation 

$g!+&?!!_f~ =_~gJ_~*~+_g?~+ 

+ Es,” (ExoO + WqJ - “0 (mExoO - UJ (4.5) 

Here, uO, w0 are determined from the Dlasius solution, I’,, is deter- 
mined from equation (4.4), ul, w1 and ExOo are determined from the solu- 
tion of the dynamical boundary layer and the external flow in Section 2. 
We shall seek a solution for ‘7, in the form 

T, _‘- .YY (E) 

Then, equation (4.5) can be transformed to the form 

(4.6) 

f,‘W - .+ f,y’-y” zcz - $ fd,," (f,' - +;I+ 2fORf2" + fo’* + &,,“)” (4.7) 

Since the temperature of the plate is assumed to be given, the bound- 
ary condition for the function ‘t’(c) will be 

Y (0) = 0 for E=O (4.8) 

In the external flow (for t = m), there are electrical currents. be 

to joule heating, these currents heat the fluid, and therefore the 
temperature of the external flow will not be constant, if terms of order 
tnL are taken into account. To determine the function T, in the external 
flow, it is necessary to solve the equation 

aTI* --- = 
ax 1 + (Exo”)2 (4.9) 

which is easily obtained from (4.1) by putting 10 = 0 and R = UJ and keep- 
ing only terms of order ml-. The solution of (4.9) has the form (T, = 0 
for x = 0) 

T,* = (1 $ Exoo2) x 

Using this solution, we obtain the following boundary condition: 

Y (00) = 1 --I- (F,.,P)2 for 5 == 00 (4.10) 
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Putting into (4.7) and (4.10) the values Exe* = ExOo in the external 

flow, for cases (2.1) to (2.6), we obtain for these cases the equations 

which determine the function P. These were solved numerically. 

Figures 6 and 7 show the behavior of the function 

(4.11) 

which gives the dimensionless temperature difference between a point in 

the flow and the wall. 'Ihe curves are for m*n = 0.5 and various values 

of or. 
TABLE 2. 

The heat transfer coefficient, to 

terms of order ml,, for a weakly 

ionized medium will have the form 
Values of Y'(0) 

w 1 (2.1). (2.5) 1 (2.2). (2.6) 

-0.176 -9.176 
z=o (4.12) i.5 -0.040 -0.176 

:.5 0.369 1.355 -0,176 -0.176 
2 2.104 -0.176 

The values of 't"(O) for various cases may be found in Table 2. 

Figures 6 and 7 show that the boundary layer heating in cases (2.2) 

and (2.6) decreases with increasing m, which is connected with a de- 

crease of the effective conductivity. In cases (2.1)and (2.5), the 

boundary layer heating increases with 

8 

0.6 

0 
2.0 4.0 6.0 

increasing o-r. For o-r - 0, the 

Fig. 6. (2.1),(2.5) Fig. 7. (2.2). (2.6) 

temperature profiles become identical for all cases. 
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5. Thermal boundary layer on a flat plate in a flow of 
fully ionized incompressible gas with anisotropic transport 
properties. Using (3.4) and (3.6)‘ we have the energy equation 

+ 
0.5 OI 1 aP -- - 

1 +oLsa mLax 1 ( u OTExO + wzv - 11 + 
osdr* 1 ap -- 

1+&V mL i3x )1 + , 

+a.21 B; [T (E2 + 0’50r ‘“‘)I + B; {T [ i +t%, (Ex”+v+oru+ i+oV mL & _ 

+ 
0,5 COT i aP --- 

ifdra mL& 1 
@rs 0.5&S 1 ap 

i +04 ( 
OTE,O --u+ozv+ -- 

1 + 0W mL ax )I 

T= c,T/U~, P=qcolJ.. B=akHo/ccpc,=oT/3 

We shall look for a solution of (5.1) of the form of (1.4) and (4.2). 
lhen, in the zero-th approximation with respect to IL, we obtain 

In obtaining (5.2) and in the problems that follow in this paper, 

use was made of equation (3.7), taking into account the smallness of 
the quantity mL. 

The maximum value of the parameter o-r/3(1 + c,J~T~), which appears in 
front of the expression on the right-hand side of (5.2) occurs at 
OT = 1 and is equal to l/6. For 07 - 0 or OT - m this parameter 
approaches zero. In view of this, to simplify the problem we shall look 

for a solution of (5.2) of the form 

(5.3) 

Considering the parameter OT/~( 1 t ,2~2) to be small, we obtain from 
(5.2) the following equations for e(t) and F(c): 

8” + f f,(j t + Pf,“2 := 0 (5.4) 

+F” +; f,F’ == 3.21 y I(f, - Ef,‘)e’ - ffo’! (7’, + e)] + 

+ + [z ( ExoO + *y “,& g) - otp (o&,0 + OS5 6w g)] @I’ + i + cow 

-t @T, (a t- P) + If,‘e’+ (T, +0) fo”1 (5.5) 
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Of course, it would be possible to look for a solution of To directly 

from equation (5.2). without making use of the smallness of o-r/3(1 + ^ ^ 
rJw), especially since equation 

Q 

Q.4 

Fig. 8. (2.3) 

(5.2) has a similarity solution in 
terms of the Blasius parameter. How- 
ever, the course adopted here, to seek 
a solution of the form (5.3). turns 
out to be more convenient. 

It is easy to show that equation 

(5.2)) when written for the external 

flow, has the solution To = const. 

Therefore, considering that T, = T,, 
the solutions of equations (5.4) and 

(5.5) should have the boundary condi- 

tions 

e(O)=O, e(+=o (5.6) 

F (0) = 0, F (04 = 0 (5.7) 

d 
From equation (5. l), neglecting all products of the small quantities 

and 07/3(1 t a*~*), we obtain for Tl the equation 

+ Er; (Ex; $ ozuo + 1”:: zkB z) - u. (cot&; - u. + ;;“,‘d:, ‘g) (5.8) 

We shall look for a solution of (5.8) in the form 

T, = ZY, (j) (5.9) 

To determine ‘VI(~) we then obtain the equation 

fo’Yl - + foY?l’ - $‘h”= ; fz8’+ 2f,“f2” + fo’2 + (ExJ2 + 

(5.10) 

To set up the boundary conditions for equation (5.10), the equation 

for the external flow analogous to (5.8) has to be solved: 

The solution of this equation has the form 



714 V.B. Boranou, G.A. Kiubinov and Khu luin’ 

From this, the boundary conditions for equation (5.10) follow: 

(5.11) 

y, (0) = 0, Yl (00) = [ I- py$ ag + (EJ” + o.5 6n acTroo j 
i+o’r* ax 

Specific computations of problems (5.4). (5.6); (5.5). (5.7); (5.10). 
(5.11) were carried through for various values of UT, a*~, and for 

values of the Prandtl number P = 0.1 and P = 0.01. For the integrations, 

it was assumed that T, z ‘vT,/U2 = 0.1. 

Figures 8 to 11 show, for illustration, the behavior of the function 

(5.12) 

which corresponds to the dimensionless temperature difference between 

a point in the flow and the wall for IBEX = 0.5 and P = 0.1 for various 

cases (2.3) to (2.6). 

Fig. 9. (2.4) Fig. 10. (2.5) 

Figures 8 to 11 show that. a determining factor in the temperature 

distribution is the heating of the fluid in the outer flow. In regard 

to this. it is clear from physical considerations that the greater the 

heat conductivity (smaller Prandt.1 number) the closer the temperature 

profile must approach the linear one. The computations for P = 0.01 con- 

firm this conclusion. For those cases in which the heating of the fluid 

in the outer flow does not depend on 07. the temperature distribution 

curves for different 07 practically merge into a single curve, nearly a 

straight line. For those cases in which the heating in the outer flow 

depends on o-r, the temperature distribution is different for different 

o-r, but. for each UT it is nearly linear (cf., for example, Fig. 12). 

‘Ike coefficient of heat transfer, to terms of order nL, for a fully 

ionized medium will have the foxm 
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I 
0’ (0) + 

z=o 

'Ihe values of Y'(O) and F'(0) for different cases are given in 
Table 3 (6'(O) = 0.021 for P = 0.1, and 0'(O) = 0.002 for P = 0.01). 

TABLE 3. 

Fig. 11. (2.6) 

Fig. 12. (2.6) 

Values of F'(O) 

0.5 

1.0 

1.5 

2.0 

(2.4) 

O.OOOl 
0 

09026 
0 

0.0055 
o.ooo2 

0.0067 
0.0004 

12.6) 

0.0609 
0 

0.0036 
0 

KZ% 

::ZE! 

Values of Yl’(O) 

1 P 1 (2.3) 1 @.4t 1 (2.5) 

0 

0.5 

1 

1.5 

2 

0.1 0.120 0.120 
I I 0.01 0.130 0.130 

0-i 0.132 0.276 
I I 0.01 0.166 0.147 

0.1 0.922 0.430 
0.01 0.447 0.209 

0.1 1.457 0.480 
0.01 0.692 0.229 

0.120 
0.130 

0.195 
0.154 

0,391 
0.256 

0.719 
0.427 

1.178 
0.665 

cm 

0.120 
0.130 

0.120 
0.130 

0.120 
0.130 

0.120 
0.130 

0.120 
0.130 

FIhe authors owe thanks to M.N. Kogan and A.C. Jiulkowskii for a dis- 
cussion of the results and useful critical remarks, and also to their 

co-workers, C.S. Fbsliakov and E.N. Starov, of the MGIJ computing center, 

for their assistance with the calculations. 
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